Penaresidin A and B, Two Novel Azetidine Alkaloids with Potent Actomyosin ATPase-Activating Activity from the Okinawan Marine Sponge Penares sp.

Jun'ichi Kobayashi, ${ }^{*, a}$ Jie-fei Cheng, ${ }^{b}$ Masami Ishibashi, ${ }^{a}$ Markus R. Wälchli, ${ }^{c}$
Shosuke Yamamura ${ }^{b}$ and Yasushi Ohizumi ${ }^{d}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
${ }^{\text {b }}$ Faculty of Science and Technology, Keio University, Yokohama 223, Japan
${ }^{\text {c }}$ Bruker Japan Company, Ibaragi 305, Japan
${ }^{\text {a }}$ Pharmaceutical Institute, Tohoku University, Sendai 980, Japan

Abstract

Two novel sphingosine-derived azetidine alkaloids, penaresidin $A, 1 a$, and $B, 1 b$, were isolated as potent actomyosin ATPase activators from the Okinawan marine sponge Penares sp. and the structures elucidated on the basis of spectral data, especially two-dimensional NMR spectra of their acetates.

In our continuing studies on bioactive substances from marine organisms, ${ }^{1}$ we have investigated extracts of numerous marine invertebrates collected in Okinawa, and the bioassay-guided purification resulted in the isolation of multifarious compounds with intriguing structures and interesting biological activities, some of which may have useful clinical applications ${ }^{2}$ or be useful as chemical probes in the life sciences. ${ }^{3}$ Recently we have examined extracts of the sponge Penares sp. and have isolated a novel antileukaemic triterpenoid, penasterol. ${ }^{4}$ Further inquiry into the bioactive constituents of this sponge led to the isolation of two novel azetidine alkaloids, which we have named penaresidin A (compound1a) and B (compound 1b), possessing potent actomyosin ATPase-activating activity. This is the first isolation of sphingosine-derived azetidine alkaloids from marine sources. In this paper we describe the isolation and structure elucidation of compounds $\mathbf{1 a}$ and $\mathbf{1 b}$.

Results and Discussion

The methanol extract of the sponge Penares sp., collected at Unten Bay, Okinawa, was partitioned between toluene and water. ${ }^{4}$ The aqueous layer was subsequently extracted with $\mathrm{CHCl}_{3}, \mathrm{EtOAc}$ and $\mathrm{Bu}^{\mathrm{n}} \mathrm{OH}$. The EtOAc-soluble fraction was subjected to column chromatography on Sephadex LH-20 $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ followed by silica gel column $\left(\mathrm{CHCl}_{3}-\right.$ $\mathrm{Bu}^{\mathrm{n}} \mathrm{OH}-\mathrm{AcOH}$-water) to afford a $c a .1 .5: 1$ mixture (1) of

1a $R=R^{\prime}=H \quad$ 2a $R=R^{\prime}=A c \quad$ 3a $R=A c, R^{\prime}=H$

1b $R=R^{\prime}=H \quad$ 2b $R=R^{\prime}=A c \quad$ 3b $R=A c, R^{\prime}=H$
penaresidin A, 1a and B, 1b, in 0.005% yield (wet weight). Since the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture 1 showed complex and indistinguishable signals, and since purification on silica gel and C_{18}-reversed-phase HPLC were ineffective, the mixture of products $\mathbf{1 a}$ and $\mathbf{1 b}$ was converted into the acetates, $\mathbf{2 a}$ and $\mathbf{2 b}$, with acetic anhydride and pyridine. The mixture (2) of the acetates displayed relatively resolvable ${ }^{1} \mathrm{H}$ signals, and signals
due to four pairs of acetyl methyls were observed, thus suggesting that compounds $\mathbf{2 a}$ and $\mathbf{2 b}$ are the tetraacetates of the penaresidins $\mathbf{1 a}$ and $\mathbf{1 b}$, respectively, and exist as a 1.5:1 mixture, judging from the signal intensity. Structure determination was carried out mainly with the mixture 2 , since it was still difficult to separate tetraacetate $\mathbf{2 b}$ from its isomer $\mathbf{2 a}$ due to their having the same retention time on HPLC (silica gel or octadecylsilane) under several solvent systems.

The common molecular formula, $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NO}_{7}$, for compounds 2 was established by HR-EI-MS ($\boldsymbol{m} / \boldsymbol{z} 497.3394, \Delta-0.3$ mmu). The IR spectrum exhibited an ester and an amide carbonyl absorption at 1740 and $1650 \mathrm{~cm}^{-1}$, respectively, and no NH and/or OH absorption, indicating that the amide is tertiary. Four of five unsaturation degrees implied by the molecular composition can be accounted for by the four acetates. The remaining one has to come from a ring system, since no sp^{2}-carbons except acetate carbonyls were observed in the ${ }^{13} \mathrm{C}$ NMR spectrum. From the ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY spectrum the proton signals ranging from $\delta 4.2$ to $\delta 5.2$ were assigned to two partial structures: $\mathrm{X}^{1}-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{X}^{2}\right)-\mathrm{CH}\left(\mathrm{X}^{3}\right)-\mathrm{CH}\left(\mathrm{X}^{4}\right)-[\mathrm{C}-1-$ $\mathrm{C}-4]$ and $\mathrm{CH}\left(\mathrm{X}^{5}\right)$, where $\mathrm{X}^{1-5}=\mathrm{OAc}$ or NAc . The ${ }^{13} \mathrm{C}$ chemical shift of the latter methine ($\delta_{\mathrm{C}} 76.92$ for 2 a and $\delta_{\mathbf{C}} 72.67$ for $\mathbf{2 b}$), based on the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum, suggested that this methine bore an acetoxy group ($\mathrm{X}^{5}=$ OAc). The ${ }^{13} \mathrm{C}$ NMR and DEPT spectra revealed that the rest of the molecule consisted of eleven methylenes, two methyls, one methine and no quaternary carbons. The remaining cyclic system, therefore, has to be constructed among four contiguous carbons [C-1-C-4] and one nitrogen atom. The presence of an azetidine ring was evidenced by the ${ }^{1} \mathrm{H}$ NMR spectrum of the monoacetate mixture (3) obtained by hydrolysis $(\mathrm{NaOH}-\mathrm{MeOH})$ of the tetraacetate mixture 2: $1-\mathrm{H}_{2}$ and $3-\mathrm{H}$ were shifted to higher field (2a: $\delta 4.33,4.63$ and 5.21; 3a: $\delta 3.71,3.87$ and 3.67 , respectively), while no notable change was observed for $2-\mathrm{H}$ and $4-\mathrm{H}$ (2a: $\delta 4.32$ and 4.40; 3a: $\delta 4.28$ and 4.33, respectively). These results suggested that $\mathrm{C}-2$ and $\mathrm{C}-4$ should be connected to a nitrogen atom attached to an acetyl group unchanged on hydrolysis to generate the azetidine ring.

While the structure of the azetidine moiety was assigned, there remained one acetoxy methine, one sp^{3}-methine, two methyls and 11 methylenes, which are assembled into a sidechain attached to $\mathrm{C}-4$. For the major component (compound 2a) one methylene ($\delta_{\mathrm{H}} 1.03$ and 1.32) was shown to be adjacent to the terminal methyl by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum and these methylene protons ($17-\mathrm{H}_{2}$) represented ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range connectivities to the two methines ($\delta_{\mathrm{C}} 76.92$ and 37.98), to which the acetoxy and the secondary methyl groups were attached,

Table $1 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for the tetraacetates $\mathbf{2 a}$ and $\mathbf{2 b}$ of penaresidin A and B

Position	2a			2b		
	${ }^{1} \mathrm{H}$	J / Hz	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	J / Hz	${ }^{13} \mathrm{C}$
1(a)	4.63 dd	15.2, 5.6	60.99 t	4.54 dd	15.2, 4.5	62.27 t
(b)	4.33 dd	15.2, 3.3		4.24 dd	15.2, 3.7	
2	4.32 m		65.05 d	4.28 ddd	4.5, 3.7, 4.2	66.62 d
3	5.21 dd	9.0, 5.2	66.45 d	5.09 dd	8.7, 4.2	67.41 d
4	4.40 m		63.19 d	4.40 m		64.81 d
5(a)	2.10 m		29.04 t	1.92 m		26.86 t
(b)	1.90 m			1.65 m		
14	1.45 m		43.35 t	4.91 ddt	10.7, 6.2, 4.8	72.67 d
15	4.81 dt	8.0, 4.7	76.92 d	1.47 m		34.93 t
16	1.50 m		37.98 d	1.45 m		24.62 d
17(a)	1.03 m		25.19 t	1.03 m		25.52 t
(b)	1.32 m			1.32 m		
18	0.82 t		13.89 q	0.83 t		11.65 q
19	0.84 d		23.11 q	0.85 d		22.16 q
1-AcO	2.03 s		$20.53 \mathrm{q}, 170.08 \mathrm{~s}$	2.05 s		20.59 q, 170.25 s
N-Ac	2.07 s		20.62 q, 170.31 s	2.08 s		20.64 q, 170.36 s
$3-\mathrm{AcO}$	1.84 s		20.74 q, 169.93 s	1.87 s		20.91 q, 169.97 s
15-AcO	1.98 s		21.07 q, 170.76 s	1.99 s		$21.20 \mathrm{q}, 170.92 \mathrm{~s}$

HMBC correlations for major isomer 2a: $\mathrm{C}-1 / 3-\mathrm{H}, \mathrm{C}-2 / 1-\mathrm{H}^{\mathrm{a}}, \mathrm{C}-2 / 3-\mathrm{H}, \mathrm{C}-2 / 4-\mathrm{H}, \mathrm{C}-3 / 1-\mathrm{H}^{\mathrm{a}}, \mathrm{C}-4 / 5-\mathrm{H}_{2}, \mathrm{C}-5 / 3-\mathrm{H}, \mathrm{C}-14 / 16-\mathrm{H}, \mathrm{C}-15 / 17-\mathrm{H}_{2}, \mathrm{C}-15 / 19-\mathrm{H}_{3}$, $\mathrm{C}-16 / 15-\mathrm{H}, \mathrm{C}-16 / 17-\mathrm{H}_{2}, \mathrm{C}-16 / 19-\mathrm{H}_{3}, \mathrm{C}-17 / 15-\mathrm{H}, \mathrm{C}-17 / 18-\mathrm{H}_{3}, \mathrm{C}-17 / 19-\mathrm{H}_{3}, \mathrm{C}-18 / 17-\mathrm{H}_{2}$ and $\mathrm{C}-19 / 16-\mathrm{H}$.
respectively, in the HMBC (${ }^{1} \mathrm{H}$-detected heteronuclear multibond correlation) spectrum. ${ }^{5}$ The acetoxy-bearing methine proton ($\delta_{\mathrm{H}} 4.81$), however, did not show vicinal coupling to the methylene ($17-\mathrm{H}_{2}$) in the ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY spectrum. From these observations the acetoxy group was placed on C-15 and the methyl group on C-16 for compound 2a.
The coupling pattern of the acetoxy-bearing methine of the minor component $\mathbf{2 b}$ was different from that of $\mathbf{2 a}$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and J-resolved ${ }^{6}$ correlations indicated that the acetoxybearing methine ($\delta_{\mathrm{H}} 4.91$) for compound $\mathbf{2 b}$ was located between two methylenes. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum revealed that the secondary methyl group was on $\mathrm{C}-16$ since the crosspeak for $17-\mathrm{H}_{2} / 16-\mathrm{H}$ was observed. The acetoxy-bearing methine carbon (δ_{C} 72.67) showed prominent HMBC correlation with $16-\mathrm{H}\left(\delta_{\mathrm{H}} 1.45\right)$, thus locating the acetoxybearing methine on $\mathrm{C}-14$. The structure of compound $\mathbf{2 b}$ was therefore concluded to be that of an acetoxy regioisomer of compound 2a.
The coupling constants of $2-\mathrm{H} / 3-\mathrm{H}(J 5.2 \mathrm{~Hz})$ and $3-\mathrm{H} / 4-\mathrm{H}$ $(J 9.0 \mathrm{~Hz})$ for compound $\mathbf{2 a}$, which was verified by decoupling experiments, indicated a $2-\mathrm{H} / 3-\mathrm{H}$ trans and $3-\mathrm{H} / 4-\mathrm{H}$ cis relationship. ${ }^{7}$ Compound $\mathbf{2 b}$ should possess the same relative configuration in the azetidine portion ($J_{2.3} 4.2, J_{3.4} 8.7 \mathrm{~Hz}$).*
Penaresidins seem to be biogenetically derived from sphingosine through cyclization of $\mathrm{N}-2$ to $\mathrm{C}-4$, an olefinic carbon of the latter, and the relative stereochemistry at $\mathrm{C}-2$ and $\mathrm{C}-3$ of sphingosine was retained in the penaresidins. ${ }^{8}$ Such an azetidine alkaloid (aside from the β-lactams) is rare even in terrestrial materials and is apparently unprecedented in marine sources, ${ }^{9}$ except for azetidine-2-carboxylic acid ${ }^{10}$ or chartellines (indole-imidazole alkaloids with a β-lactam ring). ${ }^{11}$ It is known that the actin-myosin system is involved in muscle contraction and many other cell-motility activities and the energy for the mobility events is provided by myosin ATPase. Penaresidins 1 elevated the ATPase activity of myofibrils from rabbit skeletal muscle ${ }^{12}$ to 181% of the control value at $3 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$. The tetraacetate mixture ($2 ; 3 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) did not show activation of actomyosin ATPase. Penaresidins may become

* The absolute stereochemistry of the azetidine portion, as well as the relative configuration of the substituents on the side-chain, remained to be defined.
useful chemical tools for the study of molecular mechanisms in actin-myosin contractile systems, since there are very few substances which modulate the ATPase activities of myosin and actomyosin.

Experimental

The IR spectra were recorded on a Hitachi $260-50$ IR spectrophotometer. Optical rotations were measured on a JASCO DIP-360 polarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AM-500, AM-400 and JEOL GX-500 spectrometers for solutions in CDCl_{3} with internal SiMe_{4} standard (0 ppm). Mass spectra were obtained on a JEOL HX-100 spectrometer operating at 70 eV for EI and using diethanolamine (DEA) as a matrix for FAB-MS.

Collection, Extraction and Separation.-The sponge Penares sp. was collected by netting at Unten Bay (-70 m), Okinawa island, in June 1987, and was frozen until used. The methanol ($1500 \mathrm{~cm}^{3} \times 2$) extract was dissolved in methanol-toluene ($3: 1 ; 200 \mathrm{~cm}^{3}$) and then partitioned between toluene (1000 $\mathrm{cm}^{3} \times 2$) and $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}\left(1000 \mathrm{~cm}^{3}\right)$. The aq. layer was subsequently extracted with $\mathrm{CHCl}_{3}\left(1000 \mathrm{~cm}^{3} \times 2\right)$, EtOAc ($1000 \mathrm{~cm}^{3} \times 2$) and $\mathrm{Bu}^{\mathrm{n}} \mathrm{OH}\left(1000 \mathrm{~cm}^{3} \times 2\right.$). The EtOAcsoluble fraction was subjected to column chromatography on Sephadex LH-20 (Pharmacia Fine Chemicals, $3.0 \times 90 \mathrm{~cm}$) with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1)$, followed by rechromatography on silica gel (Wako gel C-300, Wako Chemical, $3.0 \times 60 \mathrm{~cm}$) with $\mathrm{CHCl}_{3}-\mathrm{Bu}^{\mathrm{n}} \mathrm{OH}-\mathrm{AcOH}$-water (1.5:6:1:1) as eluent to give a mixture (1) of penaresidin A and B(0.005% yield by wet weight). The ratio of penaresidin A to $B(1.5: 1)$ was determined by analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the tetraacetate mixture 2.

Penaresidin A and B Tetraacetates 2.-The mixture 1 was treated with excess of acetic anhydride ($1.0 \mathrm{~cm}^{3}$) and pyridine $\left(1.0 \mathrm{~cm}^{3}\right)$. Evaporation of the organic solvents gave a residue, which was purified on a silica gel column (Wako gel C-300, $1.0 \times 20 \mathrm{~cm}$) with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($98: 2$) as eluent. The tetraacetate mixture 2 was obtained as an oil; $[\alpha]_{\mathrm{D}}^{23}+47.9^{\circ}$ (c $0.38, \mathrm{CHCl}_{3}$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2950,2850,1740,1650,1410$, $1380,1240,1040$ and $750 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR in CDCl_{3} (Table 1); EI-MS $m / z 497\left(\mathrm{M}^{+}\right), 482,454,437,398(100 \%), 378,364,335$, 318, 292, 280, 238 and 198; FAB-MS $m / z 603$ (M + DEA +
H^{+}and $498(\mathrm{M}+\mathrm{H})^{+}$(Found: M^{+}497.3349. $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{NO}_{7}$ requires $\mathrm{M}, 497.3352$).

Hydrolysis of the Tetraacetates 2.-To a solution of the tetraacetates $2(2.0 \mathrm{mg})$ in $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ was added $10 \% \mathrm{aq}$. $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred overnight and was then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave a residue, which was subjected to column chromatography on silica gel (Wako gel $\mathrm{C}-300,0.5 \times 8 \mathrm{~cm}$) with CHCl_{3} $\mathrm{MeOH}(99: 1)$ to afford the monoacetate mixture 3 as an oil $(1.4 \mathrm{mg}) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3400,1610,1560$ and 1460 ; FAB-MS $m / z 477(\mathrm{M}+\mathrm{DEA}+\mathrm{H})^{+}$and $372(\mathrm{M}+\mathrm{H})^{+}$; EI-MS m / z $371\left(\mathrm{M}^{+}\right)$and 353 (Found: $M^{+} 371.3027 . \mathrm{C}_{21} \mathrm{H}_{41} \mathrm{NO}_{4}$ requires $\mathrm{M}, 371.3036) \delta\left(\mathrm{CDCl}_{3}\right)$ for 3a: $4.33(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.28(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 3.86\left(1 \mathrm{H}\right.$, br d, $\left.1-\mathrm{H}^{\mathrm{a}}\right), 3.71\left(1 \mathrm{H}, \mathrm{d}, 1-\mathrm{H}^{\mathrm{b}}\right), 3.69(1 \mathrm{H}, \mathrm{m}$, $15-\mathrm{H}$), 3.67 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 1.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-\mathrm{CO}$), ca 1.34 (br s, $\left.\mathrm{CH}_{2} \mathrm{~s}\right), 0.90\left(3 \mathrm{H}, \mathrm{t}, 18-\mathrm{H}_{3}\right)$ and $0.87\left(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}_{3}\right)$. For minor isomer 3b, ${ }^{1} \mathrm{H}$ NMR signals were not clearly assigned because of the small amount of sample and the relatively low resolution of the spectrum.

Acknowledgements

We thank Mr. Z. Nagahama for help with sponge collections.

References

1 J. Kobayashi, M. Ishibashi, T. Murayama, M. Takamatsu, M. Iwamura, Y. Ohizumi and T. Sasaki, J. Org. Chem., 1990, 55,

3421; J. Kobayashi, J.-F. Cheng, T. Ohta, S. Nozoe, Y. Ohizumi and T. Sasaki, J. Org. Chem., 1990, 55, 3666; J. Kobayashi, J.-F. Cheng, Y. Kikuchi, M. Ishibashi, S. Yamamura, Y. Ohizumi, T. Ohta and S. Nozoe, Tetrahedron Lett., 1990, 31, 4617.
2 J. Kobayashi, H. Nakamura and Y. Ohizumi, Experientia, 1988, 44, 86.

3 Y. Ohizumi, H. Nakamura, J. Kobayashi and W. A. Catterall, J. Biol. Chem., 1985, 261, 6149; J. Kobayashi, M. Ishibashi, U. Nagai and Y. Ohizumi, Experientia, 1989, 45, 782.

4 J.-F. Cheng, J. Kobayashi, H. Nakamura, Y. Ohizumi, Y. Hirata and T. Sasaki, J. Chem. Soc., Perkin Trans. 1, 1988, 2403.

5 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093.
6 G. Bodenhausen, R. Freeman, R. Niedermeyer and D. L. Turner, J. Magn. Reson., 1977, 26, 133.
7 R. W. N. Aben, R. Smit and J. W. Scheeren, J. Org. Chem., 1987, 52, 365.
8 J. Kobayashi, M. Ishibashi, H. Nakamura, Y. Hirata, T. Yamasu, T. Sasaki and Y. Ohizumi, Experientia, 1988, 44, 800.

9 D. J. Faulkner, Nat. Prod. Rep., 1984, 1, 251, 551; 1986, 3, 1; 1987, 4, 539; 1988, 5, 613; 1990, 7, 269.
10G. Impellizzeri, S. Mangiafico, G. Oriente, M. Piattelli, S. Sciuto, E. Fattorusso, S. Magno, C. Santacroce and D. Sica, Phytochemistry, 1975, 14, 1549; B. Bach, R. P. Gregson, G. S. Holland, R. J. Quinn and J. L. Reichelt, Experientia, 1978, 34, 688.
11 U. Anthoni, K. Boch, L. Chevolot, C. Larsen, P. H. Nielsen and C. Christophersen, J. Org. Chem., 1987, 52, 5638.

12 M. Kobayashi, A. Kajiwara, M. Takahashi, Y. Ohizumi, N. Shoji and T. Takemoto, J. Biol. Chem., 1984, 259, 15007.

Paper 0/05284A
Received 23rd November 1990
Accepted 17th December 1990

